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1. Introduction

In the present work we consider QCD sum rules for the vector (V), axial-vector (A), scalar

(S), and pseudoscalar (P) channels in the large-Nc limit, the planar limit of QCD [1] and

match the corresponding operator product expansions (OPE) with the predictions of the

QCD effective string theory. This approach has been used by several authors previously,

(see e.g. [2 – 7]). In a sense, this work may be partly viewed as a simplified version of the

analysis performed in [2] but with a rather different accent.

First of all, we show how the parameters of the effective string mass spectrum can be

extracted from the sum rules for the two-point functions in a very simple way and without

involved numerical fits (this is the main distinction with [2]). Second, we try to give a

clear physical interpretation of all results appearing in the analysis. We see how in this

framework chiral symmetry breaking and confinement (i.e. the creation of a mass gap)

are intimately related. Finally we provide in this rather well defined theoretical setting an

implementation of Migdal’s program whereby all physical quantities in theories like QCD

are expressed, modulo simple numerical factors, in terms of a basic scale. fπ is this scale

in the present case.

The paper is organized as follows. In section 2 we introduce the relevant formulas.

Sections 3 and 4 are devoted to the analysis of linear string-like mass spectrum for vector

and scalar channels correspondingly. In sections 5 and 6 this analysis is extended to the

non-linear spectrum. The results obtained are interpreted in section 7. Section 8 is devoted

to a comparison with previous results. Final section 9 contains some concluding remarks.
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2. General formalism

Let us briefly remind the reader of the general formalism for deriving QCD sum rules in

the large-Nc limit. In this limit the two-point correlation functions of quark currrents are

saturated by an infinite set of narrow meson states with the quantum numbers of these

currents, i.e. they can be represented in Euclidean space as follows

ΠJ(Q2) =

∫
d4x eiQx〈q̄Γq(x)q̄Γq(0)〉planar =

∑

n

ZJ(n)

Q2 +m2
J(n)

+DJ
0 +DJ

1Q
2, (2.1)

J ≡ S, P, V,A; Γ = i, γ5, γµ, γµγ5; D0, D1 = const. (2.2)

For simplicity we do not write the Pauli matrices but the SUf (2) symmetry is understood.

The last two terms are required for renormalization of infinite sums. On the other hand,

their high-energy asymptotics are given by the OPE [8 – 10] (we consider the chiral limit)

ΠV,A(Q2) =
Nc

12π2
ln

Λ2

Q2
+

αs
12π
· 〈G

2〉
Q4

+
4ξV,A

9
παs
〈q̄q〉2
Q6

, (2.3)

ΠS,P (Q2) = − Nc

8π2
Q2 ln

Λ2

Q2
+
αs
8π
· 〈G

2〉
Q2
− 2ξS,P

3
παs
〈q̄q〉2
Q4

, (2.4)

where

ξV,P = −7, ξA,S = 11, (2.5)

and we have defined

ΠV,A
µν (Q2) ≡

(
−δµνQ2 +QµQν

)
ΠV,A(Q2). (2.6)

The symbols 〈G2〉 and 〈q̄q〉 denote the gluon and quark condensate, respectively. The

residues are parametrized as follows

ZV,A(n) ≡ 2F 2
V,A(n), ZS,P (n) ≡ 2G2

S,P (n)m2
S,P (n). (2.7)

with FV,A(n) being electromagnetic decay constants and GP (n) are related with the cor-

responding weak decay constants (see [2] for details).

The sum rules simply follow from comparison at each power of Q−2 of the OPE (2.3)

and (2.4) with the sum in Eq. (2.1) after summing up over resonances (in a chiral invariant

way) and subtracting infinite constants which are irrelevant for our purposes.

3. Sum rules for linear spectrum: Vector case

Phenomenology tells us that the linear mass spectrum predicted by effective string theories

(such as the ones represented by the Veneziano amplitude, the supersymmetric string, or

the Lovelace-Shapiro amplitude) is a very good approximation to the real world [11]. In the

present section we shall adhere to this type of spectrum, namely assume that the spectrum

is strictly linear and see what are the implications of this assumption. Thus consider the

ansatz

m2
J(n) = m2 + an, F 2(n) = const, n = 0, 1, 2, . . . (3.1)

– 2 –
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Here the universal slope a is proportional to the string tension T : a = 2πT . After renormal-

ization (subtraction of infinite constant) and taking into account the π-meson contribution

(or more generally, the possibility of a zero-mass state in the pseudoscalar and axial-vector

channels) we have

ΠV,A(Q2) =
2f2
π

Q2
δAJ +

∞∑

n=0

2F 2
V,A

Q2 +m2 + an
=

2f2
π

Q2
δAJ −

2F 2
V,A

a
ψ

(
Q2 +m2

a

)
, (3.2)

where we have used the Kronecker symbol δab to indicate that the hypothetical Goldstone

boson contributes only to the axial-vector channel due to PCAC.

The ψ-function has an asymptotic representation at zÀ1

ψ(z) = ln z − 1

2z
−
∞∑

k=1

B2k

2kz2k
, (3.3)

there B2k denote the Bernoulli numbers.

Let us introduce the notation

x ≡ m2

a
. (3.4)

Performing the procedure outlined above one arrives at the following sum rules

Nc

24π2
=
F 2
J

a
, (3.5)

0 = f2
πδAJ − F 2

J (x− 1/2) , (3.6)
αs

12π
〈G2〉 = F 2

Ja
(
x2 − x+ 1/6

)
, (3.7)

4ξJ

9
παs〈q̄q〉2 = −2

3
F 2
Ja

2x (x− 1/2) (x− 1) . (3.8)

From Eq. (3.5) it follows that the quantities F 2
J are directly expressed through the

slope a. Let us substitute them into Eq. (3.8). The result is

− ξ
J

Nc
παs16π2 〈q̄q〉2

a3
= x (x− 1/2) (x− 1) . (3.9)

Now we note that the quantity 〈q̄q〉2/a3 ≈ (220/1100)6 ∼ 10−4 is very small in the real

world. Thus the theory has a natural small parameter. More precisely, since the quantities

ξJ/3 and παs are of order one, the small parameter is

16π2 〈q̄q〉2
a3
≈ 0.01. (3.10)

The existence of this small parameter in the sum rules seems to be tightly related to that

of the chiral perturbation theory, i.e. the ratio squared of mπ to the masses of light mesons

in other channels. A kind of ”perturbation theory” can be developed here. In the zero

order the sum rules become extremely simple providing nevertheless a good approximation

to the real world. In the rest of the paper we will consider only this case.

– 3 –
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In this approximation Eq. (3.9) takes the form

x (x− 1/2) (x− 1) ' 0, (3.11)

and only two dimensionful parameters appear: The slope a which parametrizes the strength

of the gluon interaction and, hence, must be directly related to the gluon condensate 〈G2〉
(indeed we see that from (3.7)), and the π-meson weak decay constant fπ parametrizing

chiral symmetry breaking1.

Let us investigate the solutions of the above set of equations. First of all, equations

(3.5)-(3.7) and (3.11) have one trivial solution (even without any approximations) corre-

sponding to the case where the theory is weakly coupled (non-confining), without bound

states and condensates: F 2
J = a = 0 but the ratio in Eq. (3.5) is non-zero and give the

parton-model result. All non-perturbative effects are absent in this case.

Let us now analyze the possibility of a nontrivial2 chirally symmetric solution with

fπ = 0 (here of course 〈q̄q〉=0 and Eq. (3.11) is strictly true). From Eq. (3.6) we have only

one possibility, namely x = 1/2, which is consistent with Eq. (3.11). Hence the chirally

symmetric linear spectrum would be

m2
J(n) =

a

2
+ an. (3.12)

Substituting the solution in Eq. (3.7) and making use of Eq. (3.5) we obtain a relation

between the slope and the gluon condensate

αs
π
〈G2〉 = −Nca

2

24π2
, (3.13)

numerically resulting in αs
π 〈G2〉 ≈ −(370 MeV)4 that is in agreement with the standard

value in QCD, αs
π 〈G2〉 = (360 ± 20 MeV)4, in absolute value, but not in the sign, which is

an obvious inconsistency.

In fact the gluon condensate is proportional to the QCD vacuum energy εvac (see

discussions in section 7). As QCD is an asymptotic free theory the vacuum energy turns

out to be negative for the stable vacuum [13]. We draw attention to the quite interesting

fact that the solution x = 1/2 is nothing but the exact minimum of the function3 εvac ∼
−〈G2〉 ∼ x2 − x + 1/6. Hence, in the vector channels the chirally symmetric case for the

linear spectrum corresponds to the theory near the maximum of this function (since the

sign is opposite to that of vacuum energy).

Consequently, the chirally symmetric solution we have just been exploring cannot

exist for the linear spectrum if confinement holds. Thus, the property of confinement in

the large-Nc limit automatically results in Chiral Symmetry Breaking (CSB), i.e. fπ 6= 0.

This agrees with the Coleman-Witten theorem [14]: if confinement persists in the planar

limit of QCD, chiral symmetry is inevitably broken. As we will see later, the analysis of

1Throughout the paper we use the value of fπ in the chiral limit [12], fπ = 87 MeV.
2I.e. with a mass gap.
3The vacuum energy (or gluon condensate) in our approach turns out to be the function of intercept,

which is quantized, i.e. this energy is also quantized.
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the chirally broken case necessarily requires the introduction of non-linear corrections to

the spectrum in any case.

Staying within the framework of the linear spectrum, we note that the chirally symmet-

ric spectrum (3.12) for the case of ρ-mesons agrees with the one derived from the so-called

Lovelace-Shapiro (LS) amplitude [15] for the reaction π + π → π + π, which had a great

phenomenological success in the 60’s

A(s, t) ∼ Γ(1− αρ(s))Γ(1− αρ(t))
Γ(1− αρ(s)− αρ(t))

, (3.14)

with αρ(s) = 1
2 + s

a . This amplitude predicts equal masses for the ground vector and

scalar mesons, i.e. the solution x = 1/2 would extend (if one were to believe the LS

amplitude) to both cases. An important property of this amplitude is the presence of an

’Adler zero’ [16], i.e. the fact that A(s, t) → 0 as s, t→ 0. This is actually a consequence

of Goldstone theorem so there is some logical uneasiness here since we have assumed so

far that chiral symmetry is unbroken, but being the presence of the Adler zero a necessary

but not sufficient condition for CSB one can find a scape route from contradiction.

The generalization of this LS amplitude to reactions of the form π+A→ B+C was per-

formed in [17]. The generalized LS amplitude describes the axial-vector and pseudoscalar

states. It turns out that the amplitude derived in [17] predicts x = 1 for axial-vector

and pseudoscalar mesons. This is numerically inconsistent with the sum rules (even if we

include fπ) as they stand and, most importantly, with chiral symmetry restoration at high

energies (see e.g. [2]). The conclusion is that LS, in spite of its undeniable phenomeno

logical success, is unable to reproduce the sum rules for two point functions. This rules it

out as a possible model for QCD even leaving aside the fact that it does not derive from

any known string theory.

Coming back to Eqs. (3.5)-(3.8) and having ruled out the possibility of a chirally

symmetric solution to the sum rules we have to look for solutions with fπ 6= 0. We know

from current algebra that this implies a non-zero value for the quark condensate. However,

as we have discussed previously, the numerical value for the physically relevant quantity

16π2〈q̄q〉2/a3 is very small, so we can still use the approximate equation x(x− 1
2)(x−1) ' 0.

If x = 1
2 is ruled out because it corresponds to the chirally symmetric solution, can we

perhaps consider the other two solutions x = 0 or x = 1? The first one is obviously ruled

out due to sign inconsistencies. The second one is viable, but inconsistent with the sum

rules unless we accept deviations from strictly linear trajectories. As we do not know

how CSB distorts the linear spectrum, we will introduce these effects phenomenologically

through non-linear corrections to the string-like spectrum. Obviously chiral symmetry

restoration at high energies requires adopting the same value of x in all channels [2, 6] and

we will consider non-linear corrections in sections 5 and 6.

– 5 –
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4. Sum rules for linear spectrum: Scalar case

It is convenient to make the rearrangement [2]:

Π(Q2) = 2
∑

n

G2(n)m2(n)

Q2 +m2(n)
+D0 +D1Q

2

=

[∑

n

2G2(n) +D0

]
−Q2

[∑

n

2G2(n)

Q2 +m2(n)
−D1

]
, (4.1)

where the infinite constant D0 and D1 subtract the infinities coming from the sums over

resonances. After renormalization we have

ΠS,P (Q2) =
Zπ
Q2

δPJ −Q2
∞∑

n=0

2G2
S,P

Q2 +m2 + an
=
Zπ
Q2

δPJ +
2G2

S,PQ
2

a
ψ

(
Q2 +m2

a

)
. (4.2)

Let us consider again the chirally symmetric case. The pion residue Zπ vanishes in this case

and it will be taken into account in section 6 where the chirally broken case is considered.

Performing the standard procedure (just as in the vector channels using the same notation

x) one obtains the sum rules

Nc

16π2
=
G2
J

a
, (4.3)

αs
8π
〈G2〉 = −G2

Ja
(
x2 − x+ 1/6

)
, (4.4)

−2ξJ

3
παs〈q̄q〉2 =

2

3
G2
Ja

2x (x− 1/2) (x− 1) . (4.5)

The general requirement for the spectrum is the chiral symmetry restoration at high

energies (i.e. equal x for both channels). There are three solutions with these properties:

x = 0, 1/2, 1. Substituting these solutions in Eq. (4.4) and making use of Eq. (4.3) we

obtain the relation between the slope and the gluon condensate

αs
π
〈G2〉 =

Nca
2

24π2
, for x =

1

2
, (4.6)

αs
π
〈G2〉 = −Nca

2

12π2
, for x = 0 , 1. (4.7)

The first case is in agreement with the spectrum of the LS amplitude for the scalar channel

(but not for the pseudoscalar channel) and the gluon condensate is reproduced with the

correct sign this time (see discussion after Eq. (3.13)). The lightest pseudoscalar has the

mass, m2
π = a/2, in agreement with the well known fact that if no spontaneous CSB occurs,

then pion stays massive. The appearance of the other two solutions is a consequence of

the fact that an analogue of Eq. (3.6) is absent in the scalar channels. The vacuum energy

is evidently larger on these solutions, hence, they are unphysical. It is interesting to note

that the gapless solution that appears is among the energetically unfavorable ones. The

existence of this solution expresses another exact result: If a rigorously chirally symmetric

theory possesses a massless pseudoscalar bound state then there is a degenerate scalar

meson partner (see, e.g., [18]). The fact however that the value of 〈G2〉 disagrees in sign

with Eq. (3.13) is nevertheless another sign of the inconsistency of the chirally unbroken

solution.

– 6 –



J
H
E
P
0
9
(
2
0
0
6
)
0
4
7

5. Sum rules for non-linear spectrum: Vector case

According to the discussions at the end of section 3 we are forced to introduce a non-linear

spectrum. We will derive the minimal non-linear realization of the spectrum consistent

with the sum rules. For that we have to make some hypotheses about what represents the

leading contribution in the non-linear case. First of all we know nothing from experiment

about the residues of radially excited mesons. Numerical calculations show that they differ

negligibly from the linear case [2]. Thus for simplicity we do not introduce non-linear

corrections for the residues of excited states and for a1-meson as well (below we show that

Fa1 nicely agrees with experiment without any corrections). So, except for the ρ-meson,

we denote

F 2
V = F 2

A ≡ F 2. (5.1)

We note also that the mass of ρ-meson is in the real world substantially below 1 GeV, i.e.

the typical CSB scale. Consequently it is natural to expect that this meson is affected by

CSB to a larger extent than other vector mesons. We shall make the hypothesis that CSB

induces a shift in the residue of the ρ meson (and in no other vector or axial mesons). We

shall later attempt to justify this hypothesis. Then

F 2
ρ = F 2 + F̃ 2. (5.2)

Now let us introduce the non-linear mass spectrum in the form

m2
J(n) = m2 + an+ δJ(n), (5.3)

where the corrections always can be represented as follows:

δJ(n) = aAJfJ(n), fJ(0) = 1. (5.4)

Here the dimensionless constants AJ are supposed to be due to CSB, i.e. they are propor-

tional to f 2
π/a, and fJ(n) are decreasing functions of n only. They have to vanish at least

exponentially in n according to [2], or polynomially according to [6] (see discussion in sec-

tion 8), but in this work we will not adhere to any particular model for these functions. If

the non-linear corrections provide a rather big contribution to the masses of ground states

but relatively small one to those of excited states (as we expect) then the parametrization

(5.4) automatically will not be very sensitive to a concrete choice of fJ(n).

An important assumption of the present analysis is that the slope a has no corrections.

This is a universal quantity which does not feel CSB. Any corrections to the spectrum are

encoded in the value of intercept m2 and in the non-linear contribution δ(n). Such a picture

is well justified phenomenologically.

The contribution of the non-linear mass corrections to the correlator is (for the time

being we denote δ ≡ δJ (n) and omit the general factor)

1

Q2 +m2 + an+ δ
=

1

Q2 +m2 + an

(
1 +

δ

Q2 +m2 + an

)−1

=

1

Q2 +m2 + an
− δ

Q4
+

1

Q6

(
2m2δ + 2anδ + δ2

)
+O

(
1

Q8

)
. (5.5)

– 7 –



J
H
E
P
0
9
(
2
0
0
6
)
0
4
7

The ρ-meson additional contribution is

F̃ 2

Q2 +m2 + aAV
=
F̃ 2

Q2
− F̃ 2a(x+AV )

Q4
+
F̃ 2a2(x+AV )2

Q6
+O

(
1

Q8

)
. (5.6)

Let us introduce the constants

CJ0 ≡
∞∑

n=0

fJ(n), CJ
1 ≡

∞∑

n=0

nfJ(n), CJ
2 ≡

∞∑

n=0

f2
J(n). (5.7)

After summation over n and making use of notations (5.1), (5.2), and (5.7) sum rules

(3.5)-(3.8) become
Nc

24π2
=
F 2

a
, (5.8)

f2
πδAJ + F̃ 2δV J = F 2 (x− 1/2) , (5.9)
αs

12πF 2a
〈G2〉 = x2 − x+ 1/6 − 2∆J

1 , (5.10)

0 = x (x− 1/2) (x− 1)− 3∆J
2 , (5.11)

where the corrections ∆J
i are non-zero due to CSB and they are given by

∆J
1 = AJC

J
0 +

F̃ 2

F 2
(x+AV )δV J , (5.12)

∆J
2 = AJ

(
2CJ0 x+ 2CJ1 + CJ2 AJ

)
+
F̃ 2

F 2
(x+AV )2δV J . (5.13)

From Eq. (5.9) we get

F̃ = fπ. (5.14)

Thus from the same equation one has

x =
1

2
+
f2
π

F 2
=

1

2
+

24π2f2
π

Nca
. (5.15)

At this stage we need some additional input to advance. For reliability this input should

be a quantity which is experimentally known with a good accuracy. Except fπ (which is

already an input) the best candidate for such a quantity is Fρ = 154 ± 8 MeV. We note

now that this number is very close to
√

3 fπ ≈ 151 MeV. Thus, within our accuracy, we

may put Fρ =
√

3 fπ as input. Making use of Eqs. (5.1) and (5.14) one obtains

F =
√

2 fπ ≈ 123 MeV, (5.16)

which is in agreement with the experimental value for the decay constant of a1-meson

(see (5.1)): Fa1 = 123± 25 MeV. From Eq. (5.15) we immediately get the solution for the

intercept, x = 1, and the relation

a =
48

Nc
π2f2

π, (5.17)

in very good agreement with phenomenology. This formula happens to be the result re-

ported in [19] based on completely different grounds. It is curious to note that rela-

tion (5.17) can be obtained from combining the slope of the LS amplitude, a = 2m2
ρ (we

– 8 –
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remind that the slope has no corrections in the present analysis), with a known formula for

the mass of ρ-meson (5.18) (both relations were also found in [5]). In principle, Eq. (5.17)

could be taken as input from the very beginning, all other results are then automatically

reproduced. This way would be natural in the sense that considering the CSB case we

should insert a spectrum of string with CSB incorporated. Such strings were considered,

e.g., in [20]. Further development of this approach resulted in a qualitative derivation

of Eq. (5.17) in [19], where the scales of the Goldstone boson physics and of the string

dynamics are supposedly related through Eq. (5.17) by the chiral anomaly.

It is thus quite remarkable that CSB forces a jump from x = 1
2 to x ' 1. A physical

interpretation of the intercept is that it is a typical mass of ground state, hence, it should

be tightly related to the scale of CSB, ΛCSB ' 4πfπ. Accidentally or not, they are identical,

m2 ' a ' Λ2
CSB. A deeper understanding of this coincidence might lead to an independent

derivation of Eq. (5.17).

From the last sum rule Eq. (5.11) one can see that at the solution x = 1 the contribu-

tion due to the linear part of the spectrum (the first term in the r.h.s.) is exactly cancelled.

As a result the corrections turn out to be directly related to the (unwritten) quark con-

densate in the l.h.s. This is in a full agreement with our initial assumption concerning the

nature of the corrections.

The slope a has a purely gluonic nature and, consequently, its value should not change

dramatically after CSB. Thus, one may substitute Eq. (5.17) into Eq. (3.12) and obtain

the mass of ground state in the chirally symmetric case:

m2
J(0) =

24

Nc
π2f2

π . (5.18)

This is nothing but a formula for the mass of ρ-meson obtained some time ago within the

Borel QCD sum rules [21] and rederived in some other types of sum rules (see, e.g., [5,

22]). This formula also usually holds when matching different models to the vector meson

dominance and appears all over the literature (see, e.g., [23, 24]). Relation (5.18) reproduces

the experimental mass of ρ-meson with a unexpectedly high accuracy (we remind that

fπ = 87 MeV in the chiral limit). Thus, we should conclude that the mass of the ground

vector meson practically does not shift after CSB. Then we immediately obtain the constant

AV parametrizing corrections in the vector channel

AV = −24π2f2
π

Nca
= −1

2
. (5.19)

Substituting Eqs. (5.14), (5.19), and (4.6) (which can be rewritten as αs
π 〈G2〉 = F 2a) into

Eq. (5.10) we obtain the estimate

CV0 =
5

12
. (5.20)

From the same equation for the axial-vector channel we have the relation

AAC
A
0 =

1

24
. (5.21)

For a rough estimate of the a1-meson mass we may accept a kind of universality, CA
0 ≈ CV0 ,

which leads to m2
a1
≈ 1.1a ≈ (1150 MeV)2. Exactly the same value was obtained in the

– 9 –
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framework of QCD sum rules [9]. It seems that a better estimate is hardly possible within

the sum rules, let alone the fact that in the present work we have accepted the large-

Nc limit. This example shows that the mass corrections are indeed relatively small for

the mesons with the mass above the CSB scale. Even for the a1-meson they constitute

approximately 10% which competes with the accuracy of the large-Nc counting. This is

what we expected from the very beginning. Keeping in mind that the constants C J
i are of

order 1 thanks to the assumed fast convergence of functions fJ(n), we could independently

recover in this way the approximate solution x = 1 in the CSB phase from Eq. (5.11) for

the axial-vector case (knowing from Eq. (5.9) that x = 0 and x = 1/2 are not solutions).

6. Sum rules for non-linear spectrum: Scalar case

As in the previous section we will be interested in the minimal non-linear realization of the

spectrum consistent with the sum rules. Thus, we do not introduce non-linear corrections

for the residues of excited states. Let us denote

G2
S = G2

P ≡ G2
0. (6.1)

For the ground states parametrization (2.7) should be changed

ZJ(0) −→ ZJ(0) + Z̃J . (6.2)

Here Z̃P is the π-meson residue which cannot be taken into account within parametriza-

tion (2.7) and Z̃S reflects a contribution to the residue of ground scalar state. Introducing

non-linear corrections to the masses in the form (5.4) and repeating the simple calculations

outlined in the previous section one arrives at the sum rules

Nc

16π2
=
G2

0

a
, (6.3)

αs
8π
〈G2〉 = −G2

0a
(
x2 − x+ 1/6

)
+ Z̃J , (6.4)

0 = x (x− 1/2) (x− 1)− 3(x+AJ)

(
AJC

J
0 +

Z̃SδJS
2aG2

0

)
. (6.5)

Motivated by the previous results, we assume that the linear part of the spectrum does

not induce CSB. The physical solutions of the system are then x = 1 for the scalar channel

and x = 1 or x = 0 for the pseudoscalar one. In both cases we obtain the relation

Z̃P = Z̃S =
αs
8π
〈G2〉+

Nca
2

96π2
. (6.6)

Using the current algebra result,

Z̃P = 2
〈q̄q〉2
f2
π

, (6.7)

and phenomenological values for the gluon condensate and the slope one can estimate the

quark condensate

〈q̄q〉 ≈ −(170 MeV)3. (6.8)
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Taking into account our approximations, this estimation is selfconsistent. Combined eqs.

(6.6) and (6.7) pressupose a certain relation between the vacuum condensates and hadronic

parameters, which is similar to a result in [25]. For x = 1 one has AP = −1 and the n-th

pseudoscalar meson is a chiral partner for the n-th scalar meson. In the second case AP = 0

and the (n+ 1)-th pseudoscalar meson is a chiral partner for the n-th scalar meson. In this

case there is no non-linear correction to the pseudoscalar spectrum and the π-meson has

no chiral partner.

For the scalar channel we have from Eqs. (6.5) and (6.6)

ASC
S
0 = −1

8
. (6.9)

In order to estimate the mass of the ground state we can, like in the axial-vector channel,

assume an approximate universality for the non-linear contributions, CS
0 ≈ CV0 . Making

use of Eq. (5.20) this leads to m2
S(0) ≈ 0.7a ≈ (920 MeV)2. The relative contribution to

the residue of ground state due to non-linear corrections is of order Z̃S/ZS(0) = 0.1÷ 0.2,

i.e. much less than for the ρ-meson.

7. Discussions

Let us give an intuitive interpretation which lies behind the results obtained. First of all,

the gluon condensate is a measure of vacuum energy εvac. To be more precise we remind

that the vacuum energy and the nonperturbative part (n.p.) of v.e.v. 〈G2〉 are related by

the anomaly in the trace of energy-momentum tensor [26]

4εvac = 〈Θµ
µ〉n.p. =

β(αs)

4αs
〈G2〉n.p. +O(α) + · · · . (7.1)

The term O(α) is the contribution of quark polarization effects. In [27] the effective po-

tential for Θµ
µ was constructed in the tree approximation. It was shown that the minimum

of this potential (vacuum energy) must be negative, i.e. as the β-function is negative only

a positive gluon condensate provides a stable vacuum.

In our analysis it is instructive to regard mesons as the spectrum of excitations given

by the effective normalized quark vacuum ”potential energy” U , where

U ≡ −αs
π

〈G2〉
a/(4π2)

, (7.2)

and the gluon condensate 〈G2〉 depends on the vacuum energy εvac.

Let us take the vector and axial-vector channels as an example and discuss the three

solutions of the sum rules mentioned in the paper. The trivial solution corresponds to the

weakly-coupled QCD where the three- and four-point gluon interactions are suppressed

and we effectively have Umin = 0 like in the QED. Since the vacuum is perturbative there

are neither condensates nor resonances.

The chirally-symmetric (CS) solution corresponds to fluctuations over the perturbative

vacuum. The potential energy U has a local maximum in this point, Umax = m2
ρ, which
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results in a negative gluon condensate. As we still calculate the excitations over the zero-

level, there appear the mass gap ∆CS = m2
ρ = a/2.

After the CSB the potential energy recovers its minimal value, Umin = −m2
ρ. This

new minimum turns out to be lower than the perturbative one by the value 8π2f2
π which is

equal to m2
ρ. As a result the mass-gap enlarges by two times, ∆CSB = 2m2

ρ = a = (4πfπ)2.

It is exactly equal to the generally accepted value for the gap squared of spontaneous chiral

symmetry breaking Λ2
CSB!

Let us try to understand the ”special” nature of ρ-meson in the framework of presented

approach. In the perturbative vacuum we always have photons which are the only massless

colorless particles in the Standard Model. However, in the nonperturbative vacuum this

vector particle ”feels” the ”deep” below U = 0 through its virtual quark-antiquark com-

ponents. As a result the quark and antiquark in the virtual pair can acquire a dynamical

(constituent) mass, converting the photon into a massive vector particle. In other words,

we can observe the photon over this deep as a vector particle with the mass mρ. Since the

height of hump over zero-level and that of deep below this level are equal (the perturba-

tive vacuum is distorted symmetrically in the both directions), the ρ-meson mass is not

shifted after the CSB. The described effect in a natural way results in the enhancement

(compared to other mesons) of probability for creation of this meson from vacuum, i.e. the

positive shift of ρ-meson residue. This interpretation provides an intuitive picture about

the mechanism of vector meson dominance.

In the axial-vector channel the situation is completely different. The a1-meson pole

is shifted in the CSB phase supposedly due to the π − a1 mixing, i.e. the a1-meson

acquires additional mass due to a very intensive interaction with the Goldstone bosons.

The mechanism seems to be the following. In the chirally symmetric phase both masses

are equal, m2
a1

= m2
π = a/2. In the CSB phase these particles become maximally mixed.

If two particles are mixed, rotation of their fields to a physical basis is known to result in

repulsion of the initial masses. If the mixing is maximal the repulsion is then also maximal

and in our case leads to m2
a1

= a/2 + a/2 = a, m2
π = a/2 − a/2 = 0. This interpretation

is in a full agreement with old results of current algebra [28, 29]. Namely, if the chiral

symmetry were unbroken the ground states would fall into irreducible representations of

SU(2) ⊗ SU(2) chiral group, with the masses being equal insight a given representation.

After CSB these representations get mixed. In particular, the following relation holds:

m2
π cos2 ψ + m2

a1
sin2 ψ = m2

ρ, where ψ is a mixing angle between pseudoscalar and axial-

vector representations. This angle was determined from the ρ width to be around 45o, i.e.

the mixing is maximal. In the chiral limit the relation converts then into the Weinberg

formula. It is interesting to note that the scalar and vector representations practically do

not mix after CSB. It is another manifestation of the fact that ρ-meson mass does not shift

after CSB. So it does for the ground scalar meson. In practice, however, this state could

have glueball, four-quark and strange components which hamper the prediction of its mass

on the base of considered sum rules.

Thus the underlying reason for the appearance of mass shifts in the CSB phase is the

formation of constituent quarks which interact with the Goldstone bosons in a different

way in channels with different quantum numbers. This effect is drastic for the ground
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states, the higher is the radial excitation the less important is the CSB phenomenon and

the chiral symmetry gets restored [6, 30].

Let us emphasize that the formulas like mρ =
√

8 πfπ make sense only in the CSB

phase. This point sometimes causes a confusion in the literature (see e.g. [22]). The

mentioned relation by no means signifies that in-medium mass of ρ-meson changes in

response to changing fπ, it can not be an order parameter for phase transitions like fπ.

The primordial formula is mρ =
√
a/2, i.e. this mass has a gluonic origin. What we should

expect at high temperatures or baryon densities is a decreasing ma1 up to the value mρ, the

latter being unchanged in the first approximation. At the same time mπ should increase

up to the same value mρ. Finally, all masses of ground states become equal to
√
a/2 in

the chirally restored phase.

8. Relation to other work

Concerning the nature of non-linear corrections to the string-like spectrum we would like to

mention an interesting paper by Weinberg [29]. In that approach any mass matrix can be

written as the sum of chirally invariant term and chirally non-invariant one. The latter term

appears due to a non-trivial matrix of axial couplings and destroys the chiral symmetry

in the spectrum. Our analysis suggests a one-to-one correspondence between the chirally

invariant linear part of the spectrum and the first term, and the non-linear contribution

and the second term in [29]. For the higher excitations the matrix of axial couplings is

expected to gradually get trivial [31] resulting in suppression of the second term. This

scenario realizes an expectation (see, e.g., discussions in [32] and references therein) that

restoration of chiral symmetry in the hadron spectrum is related to decoupling of Goldstone

bosons from highly excited states.

In some models based on sum rules at large-Nc [4, 5, 7] the intercepts in spectrum of

chiral partners are different. This discrepancy with our results (and those of [2, 6]) can be

confusing. We note, however, that such type of spectra are usually obtained using some

additional assumptions. In [7] both models were designed with the aim to obtain a non-

zero dimension-two gluon condensate. The price to pay is, e.g., that the well-motivated

relation (5.17) does not hold. In the model in [4] the expression for low-energy constant L8

was imposed as ”another one” sum rule and then fine-tuned by a special prescription for the

cut-off in the infinite sums. As a result this constant comes from perturbative logarithm,

i.e., it is identically zero for any finite number of resonances (lack of a smooth transition

from finite number of states to infinite one). The ideas in [5] are somewhat close to those

of present paper, but in that paper there is no natural transition to the chirally symmetric

case and the chosen way to introduce the non-linear corrections is rather questionable.

In the literature exist two different estimations for the rate of chiral symmetry restora-

tion. In [6] the power-law minimal fall-off was obtained from matching to OPE without

any convergence requirements for the sum rules, while in [2] the fall-off was estimated to

be exponential after imposing the convergence for the generalized Weinberg sum rules. At

present it is difficult to say which variant is realized in nature.
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Finally we would like to mention a possible relation of our work to the so-called

AdS/QCD models which are believed to provide a precise correspondence between con-

formal gauge theories (like QCD in the ultraviolet region) and some superstring theories

(see, e.g., [33] and references therein). These models can naturally incorporate chiral prop-

erties of QCD, in particular, the Gell-Mann-Oakes-Renner formula was derived in [34] and

relation to some effective models with hidden gauge bosons was demonstrated in [24]. As

was noticed in [6] and developed in [35] they are often dual to the Migdal approach to

the QCD sum rules [36] based on Padé approximation of the two-point correlators. Thus,

QCD sum rules in the large-Nc limit and AdS/QCD models seem to be complementary

approaches. In this respect an interesting result was reported in [37]. Namely, at certain

constraints on the infrared behavior of AdS/QCD one can obtain the linear spectrum for

the vector and axial mesons with the same slope. The next successful step in this direc-

tion would be a derivation of AdS/QCD model which reproduces equal intercepts to be

consistent with chiral symmetry restoration at high energies. Another challenge for the

AdS/QCD approach would be derivation of the relation for the string slope, Eq. (5.17).

9. Conclusions

In the late 70’s before the publication of Shifman-Vainstein-Zakharov paper [8] A. Migdal

formulated the program of calculation of the whole spectrum for mesons made of light

quarks as a function of some unique dimensional parameter µ: Mi = µCi, where the factor

Ci depends on the discrete input parameters of QCD such as the number of colours and

flavors [36]. This formula was supposed to be possible due to small values of bare quark

masses which can be neglected (except the Goldstone bosons, of course).

The approach presented in this paper is, in a sense, a concrete realization of Migdal

program. Indeed, the spectrum depends on the constant fπ, the slope of trajectories,

and the gluon condensate. These three parameters are related by Eqs. (4.6) and (5.17).

Consequently, we may choose only one of them to parametrize the whole spectrum. The

most natural choice is evidently fπ. The first correction to the spectrum comes from taking

into account the quark condensate squared just as was supposed by Migdal in the same

paper! The extension of this analysis to mesons with other quantum numbers and to the

SUf (3) group is a rather technical work.
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